Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell.

نویسندگان

  • Allison M Speers
  • Gemma Reguera
چکیده

The consolidated bioprocessing (CBP) of corn stover pretreated via ammonia fiber expansion (AFEX-CS) into ethanol was investigated in a microbial electrolysis cell (MEC) driven by the exoelectrogen Geobacter sulfurreducens and the CBP bacterium Cellulomonas uda. C. uda was identified in a screening for its ethanologenic potential from AFEX-CS and for producing electron donors for G. sulfurreducens fermentatively. C. uda produced ethanol from AFEX-CS in MECs inoculated simultaneously or sequentially, with the concomitant conversion of the fermentation byproducts into electricity by G. sulfurreducens. The fermentation and electrical conversion efficiencies were high, but much of the AFEX-CS remained unhydrolyzed as nitrogen availability limited the growth of the CBP partner. Nitrogen supplementation stimulated the growth of C. uda, AFEX-CS hydrolysis and ethanologenesis. As a result, the synergistic activities of the CBP and exoelectrogen catalysts resulted in substantial energy recoveries from ethanologenesis alone (ca. 56%). The cogeneration of cathodic H(2) in the MEC further increased the energy recoveries to ca. 73%. This and the potential to optimize the activities of the microbial catalysts via culturing approaches and genetic engineering or adaptive evolution, make this platform attractive for the processing of agricultural wastes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST).

Current technology using corn stover (CS) as feedstock, Ammonia Fiber Expansion (AFEX) as the pretreatment technology, and Saccharomyces cerevisiae 424A(LNH-ST) as the ethanologenic strain in Separate Hydrolysis and Fermentation was able to achieve 191.5 g EtOH/kg untreated CS, at an ethanol concentration of 40.0 g/L (5.1 vol/vol%) without washing of pretreated biomass, detoxification, or nutri...

متن کامل

Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

BACKGROUND Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harv...

متن کامل

Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations

BACKGROUND Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design an...

متن کامل

Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass.

In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial cata...

متن کامل

A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover

BACKGROUND In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions and performing comprehensive mass balances will help focus attentio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 46 14  شماره 

صفحات  -

تاریخ انتشار 2012